Database documentation: rdb

K. A. Mackay

NIWA Fisheries Data Management Database Documentation Series

Contents

1	Introduction to the Database Document series	4
2	Research Database	4
3	Data Structures	4
	3.1 Table relationships	4
	3.2 Database Standards	8
	3.3 Official Code Tables	8
	3.4 MAF Fisheries Project Management	9
4	Table Summaries	11
5	rdb Tables	12
	5.1 Table 1: area codes	12
	5.2 Table 2: t door dist codes	12
	5.3 Table 3: t fish meas codes	13
	5.4 Table 4: t fish obs codes	13
	5.5 Table 5: t_fix_meth_codes	14
	5.6 Table 6: force chk	
	5.7 Table 7: t headline codes	15
	5.8 Table 8: t gon sys desc	16
	5.9 Table 9: t_gon_stg_meth	16
	5.10 Table 10: lw coeff	
	5.11 Table 11: meth codes	18
	5.12 Table 12: t nation	18
	5.13 Table 13: species desc	19
	5.14 Table 14: species usage	19
	5.15 Table 15: species master	20
	5.16 Table 16: t samp sel codes	22
	5.17 Table 17: t sex codes	
	5.18 Table 18: t_stom_cond_codes	23
	5.19 Table 19: t_stom_state_codes	
	5.20 Table 20: t vessels	
	5.21 Table 21: t_wgt_meth_codes	25
	5.22 Table 22: t wing dist codes	
	5.23 Table 23: t proj header	
	5.24 Table 24: t_proj_contract	
	rdb business rules	
	6.1 Introduction to business rules	28
	6.2 Summary of rules	
A	ppendix 1 – Reference code tables	
Li	ist of Figures	
Fi	igure 1: Entity Relationship Diagram (ERD) for the species codes tables	5
	igure 2: ERD of the gonad staging methodology tables	
Fi	igure 3: ERD for the historical MAF Fisheries Project Management System	10

Revision History

Version	Change	Date	By Whom
1.0	Initial release	1996	Kevin Mackay
1.1	Unknown	20-Jan-01	
1.2	Changed t_fish_meas_codes.descrptn from	12-Apr-07	Fred Wei
	65 to 128 characters		
1.3	Renamed vessels table to t_vessels to	6Aug14	David Fisher
	reflect name in the database.		
2.0	Postgres version	Jan 2016	D Fisher, F Wei

1 Introduction to the Database Document series

The National Institute of Water and Atmospheric Research (NIWA) currently carries out the role of Data Manager and Custodian for the fisheries research data owned by the Ministry for Primary Industries (MPI) formerly the Ministry of Fisheries.

This MPI data set, incorporates historic research data, data collected by MAF Fisheries prior to the split in 1995 of Policy to the Ministry of Fisheries and research to NIWA, and data collected by NIWA and other agencies for the Ministry of Fisheries and subsequently for MPI.

This document is a brief introduction to the research database **rdb**, and is part of the database documentation series produced by NIWA. It supersedes the previous documentation by Mackay (1997)¹ on this database.

All documents in this series include an introduction to the database design, a description of the main data structures accompanied by an Entity Relationship Diagram (ERD), a listing of all the main tables, and information system business rules. The ERD graphically shows how all the tables link together and their relationship with other databases.

This document is intended as a guide for users and administrators of the **rdb** database. This database has been implemented as a schema within the Postgres database called **fish**.

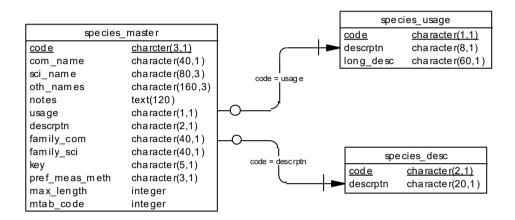
2 Research Database

The **rdb** database is the central database for the Ministry for Primary Industries Fisheries contract work in NIWA, containing 23 key reference code tables and views that are referenced by all other research databases.

Also contained within the **rdb** database are tables from a legacy 4GL application. This application managed all research project contracts between the MAF Fisheries Research and MAF Fisheries Policy groups. This application became redundant with the merger of MAF Fisheries Research and NIWA in 1996. These tables, although now inactive, are retained for historical interests.

3 Data Structures

3.1 Table relationships


This database contains a collection of entities that range from single unrelated tables to tables with slightly more complicated relationship structures. Figures 1-3 show the ERDs for these related tables, which illustrate their logical structure² and entities (each entity is implemented as a database *table*). This schema is valid regardless of the database system chosen, and it can remain correct even if the Database Management System (DBMS) is changed. Each table represents an object, event, or concept in the real world that is selected to be represented in the database. Each *attribute*

¹ MACKAY, K.A., 1996: Marine Research database documentation: 15 rdb. *NIWA Internal Report (Fisheries) No. 252*. 34p.

² Also known as a database *schema*.

of a table is a defining property or quality of the table. All of the table's attributes are shown in the ERD. The underlined attributes represent the table's primary key³. The ERD's in this document show attributes within the tables with generic data-types.

Physical Data Model						
Project: rdb c	Project : rdb database					
Model: Species codes						
Author: dba Version 1 1/3/01						

curr_spp			
species_master.code	charcter(3,1)		
species_master.com_name	character(40,1)		
species_master.sci_name	character(80,3)		
species_master.oth_names	character(160,3)		
species_master.notes	text(120)		
species_master.usage	character(1,1)		
species_master.descrptn	character(2,1)		
species_master.family_com	character(40,1)		
species_master.family_sci	character(40,1)		
species_master.key	character(5,1)		
species_master.pref_meas_meth	character(3,1)		
species_master.max_length	integer		
species_master.mtab_code	integer		
☐ species_master			

Figure 1: Entity Relationship Diagram (ERD) for the species codes tables

³ A primary key is an attribute or a combination of attributes that contains an unique value to identify that record.

The **rdb** database is implemented as a relational database; i.e., each table is a special case of the mathematical construct known as a *relation* and hence elementary relation theory is used to deal with the data within tables and the relationships between them. There are three types of relationships possible between tables, but only one exists in **rdb**: one-to-many⁴. These relationships can be seen in ERDs by connecting a single line (indicating 'many') from the child table; e.g., $t_gon_stg_meth$, to the parent table; e.g., $t_gon_sys_desc$, with an arrowhead (indicating 'one') pointing to the parent. Note that the word 'many' applies to the possible number of records in one table that one record in another table is associated with. For a given instance, there might be zero, one, two, or more associated records, but if it is ever possible to have more than one, we use the word 'many' to describe the association.

Every relationship has a mandatory or optional aspect to it. If a relationship is mandatory, then it has to occur at least once, while an optional relationship might not occur at all. For example, in Figure 2, consider that relationship between the table $t_gon_sys_desc$ and it's child table $t_gon_stg_meth$. The symbol "O" by the child $t_gon_stg_meth$ means that a gonad staging system record can have zero or many matching gonad stage method code records, while the bar by the parent $t_gon_sys_desc$ means that for every gonad stage method code record there must be a matching gonad staging system record.

These links are enforced by foreign key constraints⁵. Constraints do not allow *orphans* to exist in any table; i.e., where a child record exists without a related parent record. This may happen when: a parent record is deleted; the parent record is altered so the relationship is lost; or a child record is entered without a parent record

Constraints are shown in the table listings by the following format:

Foreign-key constraints:

"foreign key name" FOREIGN KEY (attribute[,attribute]) REFERENCES parent table (attribute[, attribute])

Note that the typographical convention for the above format is that square brackets [] may contain more than one item or none at all. Items stacked between vertical lines | | are options of which one must be chosen.

For example, consider the following constraint found in the table t gon stg meth:

Foreign-key constraints:

"fk_gon_stg_meth_sys_desc" FOREIGN KEY (stage_meth) REFERENCES t_gon_sys_desc(stage_meth)

This means that the value of the attribute *stage_meth* in the current record must already exist in the parent table *t gon sys desc* or the record will be rejected and an error message will be displayed.

6

⁴ A one-to-many relationship is where one record (the *parent*) in a table relates to one or many records (the *child*) in another table; e.g., one gonad staging system in *t_gon_sys_desc* can have many gonad stage method codes in *t_gon_stg_meth* but one gonad stage method code can only come from one gonad staging system.

⁵ Also known as referential constraints or integrity checks.

Section 5 lists all the **rdb** tables as implemented by the Postgres DBMS. As can be seen in the listing of the tables, each table has a primary key on it. Primary keys are generally listed using the following format:

```
Indices: index name PRIMARY KEY, btree (attribute [, attributes ])
```

where attribute(s) make up the primary key and the index name is the primary key name. These prevent records with duplicate keys from being inserted into the tables; e.g., a species record being inserted with an existing species code.

The database listing (Tables 1-24) show that the tables also have indices on many attributes. That is, attributes that are most likely to be used as a searching key have like values linked together to speed up searches. These indices are listed using the following format:

```
Indices: index name btree (attribute)
```

Note that indices may be simple, pointing to one attribute or composite pointing to more than one attribute.

Physical Data Model			
Project: rdb database			
Model: Gonad staging method codes			
Author : dba Version 1 1/3/01			

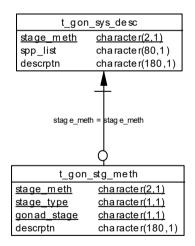


Figure 2: ERD of the gonad staging methodology tables

3.2 Database Standards

Many of the tables in the **rdb** database were created before the introduction of the Marine Research Computing database standards⁶. Therefore, these tables do not comply with all the standards, most notably the addition of the prefix "t_" to the table names to distinguish them from attribute names. A decision was made to retain these original names as most of the tables in the **rdb** database are accessed or referenced by software applications throughout the organization, including data checking and data loading routines, stock assessment and biomass calculations, plus the myriad of personal scripts written by users. Any change could therefore have a significant flow-on effect throughout NIWA. All tables created after the introduction of the database standards do comply, and are easily recognized by the "t_" prefix to their name.

3.3 Official Code Tables

There are currently 23 official code tables residing in the **rdb** database. The majority of which are single tables, such as *area_codes* (Table 1) and *t_dist_door_codes* (Table 2), which contain a code and its definition. There are some more complicated structures involving between two and four tables which will be explained later in this document.

The most fundamental of all research codes are the species codes. Not only are they used by nearly every other fisheries research database in NIWA, they also are the legal codes used for all Ministry for Primary Industries fisheries data activities, such as CELRs. Therefore, the codes are dependant not only on the species, but also the intended usage. All species codes are held in the *species_master* table (Table 15, Figure 1). This table also stores the common, scientific, family names as well as other commonly used names, e.g., orange roughy, *Hoplostethus atlanticus*, also known as deepsea perch. Species codes usage is controlled by the code *usage*, which is the primary key to the table *species_usage* (Table 14). To aid in searches, the species codes have been broadly categorized into groups such as shellfish, birds, etc by the code *descrptn*. This code is defined in the *species_desc* table (Table 13).

Note that these three letter species codes do not all refer to the taxonomic level of species. While most of these codes represent a single species, other codes represent multiple species, other levels of taxa typically genus, or family, or occasionally inorganic material such as rocks or anthropogenic material such as various classifications of rubbish, etc.

To prevent obsolete species codes from being used in other databases the view *curr_spp*, literally current species codes, was created. This view is based on the SQL SELECT statement that selects all attributes from *species master* where the code *usage* does not equal "O" (for obsolete).

Length/weight coefficients for important species are stored in another table *lw_coeff* (Table 10), which is connected to *species_master* by a foreign key constraint. There can be more than one record per species in this table, usually depending on the age, time of year, and area the raw dataset was collected. The default set of coefficients is flagged by the attribute *ts_default* to be used in the biomass and checkq⁷ programs.

Gonad stage method codes (Figure 2) is also more than just a single table because such codes depend not only the species, sex, and sexual maturity, but more importantly on who is collecting the data and what results they are trying to get out. Two tables are used. The first, t gon sys desc

-

⁶ Ng, S. 1992: Standards for setting up databases and their applications. *MAF Fisheries Greta Point Internal Report No.* 180. 31p

⁷ checkq is a language written by MAF Fisheries staff to validate raw ASCII files against a format file of business rules prior to insertion into a RDBMS.

(Table 8), defines the gonad staging method code *stage_meth* by who uses the code and on what species. The second table *t_gon_stg_meth* (Table 9) describes that state of the gonad for each staging method, species, sex, and gonad stage code.

3.4 MAF Fisheries Project Management

While no longer in use since the merger with of MAF Fisheries Research with NIWA, this group of tables are still retained for historical reference.

The former MAF Fisheries Project Management system kept track of a number of defined projects through the table t_proj_header (Table 23, Figure 3) as they progressed from the proposal stage through to approval. If the project reached approval status a contract was created between MAF Fisheries and MAF Policy for the current financial year. The details of this project are held on the $t_proj_contract$ table (Table 24). If the project spanned several years then a new contract was created for every subsequent financial year. This resulted in one project having many contracts, as shown by the one-to-many relationship in the ERD.

Of course, not all projects reached approval status, many being rejected after proposal. This is reflected in the ERD by the optional symbol "O" on the one-to-many relationship between *t proj header* and *t proj contract*.

Physical Data Model				
Project: rdb o	Project: rdb database			
Model: MAF Fisheries Project Managment system				
Author : dba	Version 1	1/3/01		

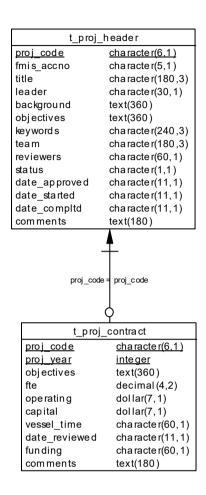


Figure 3: ERD for the historical MAF Fisheries Project Management System

4 Table Summaries

The following is a listing of the tables contained in the **rdb** database:

• Official code tables

- 1. **area codes:** contains a list of codes denoting the various survey areas in New Zealand waters.
- 2. **t_door_dist_codes**: contains a complete list of codes describing how the distance between the doors was derived.
- 3. t fish meas codes: contains a list of current preferred methods of length measurement used.
- 4. **t_fish_obs_codes**: contains a list of codes showing placement of fish at the net mouth during the shot as seen on the net sonde.
- 5. t fix meth codes: contains a complete list of method codes for fixing a position.
- 6. force chk: is used for cross-checking beaufort scale, wind speed, and sea condition.
- 7. **t headline codes**: contains a list of codes to describe how the headline height was derived.
- 8. t gon sys desc: stores a description of each gonad staging system used.
- 9. t_gon_stg_meth: stores descriptions of each gonad stage comprising each gonad staging system.
- 10. lw coeff: contains coefficients used to calculate the weight of a fish from its length.
- 11. **meth_codes**: contains a list of 2-digit codes of data collection methods used for fisheries research.
- 12. t nation: contains ISO standard country names and codes.
- 13. species desc: contains all species description codes, e.g., fish, crustacea, molluscs.
- 14. **species_usage**: lists codes for the usage of species codes, e.g., species code used by ITQ management or research etc.
- 15. **species_master:** contains a list of species codes, scientific and common names and other details for use in ALL Research and Operations databases.
 - a) **curr spp:** is a view on *species master* of all current species codes.
- 16. t_samp_sel_codes: contains a list of 1-digit codes for the method by which fish have been selected for length frequency sampling.
- 17. t sex codes: contains a list of codes for the sex of fish.
- 18. t stom cond codes: contains a list of codes for the condition of digested prey in stomachs.
- 19. t stom state codes: contains a list of codes for the state of stomach fullness.
- 20. t_vessels: contains a list of 3-character codes and names of vessels used in or to collect Fisheries Research data.
- 21. t_wgt_meth_codes: contains a list of codes for the method which the sample weight was derived.
- 22. t_wing_dist_codes: contains a list of codes describing how the distance between the wings was derived.

• MAF Fisheries Project Management (inactive since 1996)

- 24 t proj header: contains header information for Marine Research projects.
- 25 t_proj_contract: contains information on yearly contracts drawn up for each project with MAF Policy.

5 rdb Tables

The following are listings of the tables in the **rdb** database, including attribute names, data types (and any range restrictions), and comments.

Official Code Tables

5.1 Table 1: area_codes

Comment: Complete list of 3- or 4-letter codes denoting the various survey areas, QMAs, river catchments, and statistical areas in and around New Zealand and the EEZ.

Column	Type	Null?	Description
--------	------	-------	-------------

code character(5) No 3- or 4-character code for each

unique area.

descrptn character (200) No Description of area code.

Indexes:

"area codes pk" PRIMARY KEY, btree (code)

5.2 Table 2: t_door_dist_codes

Comment: Complete list of codes describing how the distance between the trawl doors (door spread) was derived.

Column	Type	Null?	Description

door code character(1) No 1-character code for how door

spread was derived.

descrptn character(60) No Description of door spread code.

Indexes:

"pk_door_dist_codes" PRIMARY KEY, btree (door code)

5.3 Table 3: t_fish_meas_codes

Comment: List of current preferred methods of length measurement used, lengths are rounded down to nearest cm class (mm for scampi).

Column Type Null? Description

fish meas code character(1) No 1-character code for fish

measurement method.

descrptn character varying(128) No Description of measurement method

code.

Indexes:

"pk_fish_meas_codes" PRIMARY KEY, btree (fish_meas code)

5.4 Table 4: t_fish_obs_codes

Comment: Complete list of codes showing placement of fish at the net mouth during the shot as seen on the net sonde.

Column Type Null? Description

fish_obs_code character(1) No 1-character code for fish

observation on the net sonde.

descrptn character(60) No Description of fish observation

code.

Indexes:

"pk_fish_obs_codes" PRIMARY KEY, btree (fish_obs_code)

5.5 Table 5: t_fix_meth_codes

Comment: Complete list of codes for the methods used for fixing a position of an observation.

Column	Туре	Null?	Description
fix_meth_code	character(2)	No	2-character code for method of fixing a position.
descrptn	character(60)	No	Description of position fix code.

Indexes:

"pk_fix_meth_codes" PRIMARY KEY, btree (fix meth code)

5.6 Table 6: force_chk

Comment: This table is used for cross-checking beaufort scale, wind speed, and sea condition prior to loading into the trawl database.

Column	Туре	Null?	Description
force	smallint	No	Beaufort scale.
min_spd	smallint	No	Minimum valid wind speed (m/s) for beaufort scale.
max_spd	smallint	No	Maximum valid wind speed (m/s) for beaufort scale.
min_seac	smallint	No	Minimum valid sea condition code for beaufort scale. Refer Appendix 1 of the database documentation.
max_seac	smallint	No	Maximum valid sea condition code for beaufort scale. Refer Appendix 1 of the database documentation.

Indexes:

"nx force chk force" UNIQUE, btree ("force") Check constraints:

[&]quot;force chk force check" CHECK ("force" >= 0 AND "force" <= 12)

[&]quot;force_chk_max_seac_check" CHECK (max_seac >= 1 AND max_seac <= 9)
"force_chk_max_spd_check" CHECK (max_spd >= 1 AND max_spd <= 127)

[&]quot;force_chk_min_seac_check" CHECK (min_seac >= 0 AND min_seac <= 8)

[&]quot;force chk min spd check" CHECK (min spd >= 0 AND min spd <= 30)

5.7 Table 7: t_headline_codes

Comment: Complete list of codes to describe how the trawl headline height was derived.

Column Type Null? Description

headline_code character(1) No 1-character code for method of

measuring headline height.

descrptn character(60) No Description of headline height

measurement method code.

Indexes:

"pk_headline_codes" PRIMARY KEY, btree (headline_code)

5.8 Table 8: t_gon_sys_desc

Comment: Contains the codes and descriptions of each gonad staging system used.

Column	Type	Null?	Description
stage_meth	character varying(2)	No	2-character code to uniquely identify the different gonad staging systems.
spp_list	character varying(80)		List of species (separated by commas) for which this method is valid.
descrptn	character varying(180) No	Description of staging system, including references.

Indexes:

"pk_gon_sys_desc" PRIMARY KEY, btree (stage_meth)

5.9 Table 9: t_gon_stg_meth

Comment: Table to store the codes and description for each gonad stage comprising each staging system.

Column	Type	Null?	Description
stage_meth	character varying(2)	No	2-character code to uniquely identify the gonad staging system used. Refer t_gon_sys_desc.
stage_type	character varying(1)	No	1-character code to say what is being staged: 1=males; 2=females; E=eggs
gonad_stage	character varying(2)	No	1-character code for actual stage under the system.
descrptn	text		Description of the actual gonad stage.

Indexes:

Foreign-key constraints:

"fk_gon_stg_meth_sys_desc" FOREIGN KEY (stage_meth) REFERENCES rdb.t gon sys desc(stage meth)

5.10 Table 10: lw_coeff

Comment: Coefficients used to calculate weight of fish from length, where weight is calculated from an equation.

Column	Туре	Null?	Description
spp_code	character(3)	No	3-character species code to which the length/weight coefficients apply.
sex	smallint		Numeric code for sex to which the length/weight coefficients apply (1=males, 2=females).
ts_default	character(1)		'Y' = default length/weight coefficients for trawl survey analyses, otherwise null.
lw_coeff_a	numeric(7,6)		Coefficient a.
lw_coeff_b	numeric(7,6)		Coefficient b.
lw_coeff_c	numeric(7,6)		Coefficient c.
meas_meth	character(3)		Measurement method(s) used to establish the fish length. Refer t_fish_meas_codes.
reference	text		Publication references etc.

Indexes:

[&]quot;lw_spp_indx" btree (spp_code)

Check constraints:

[&]quot;lw_coeff_ts_default_check" CHECK (ts_default = 'Y'::bpchar)

5.11 Table 11: meth_codes

Comment: Complete list of 2-digit codes of data collection methods used in Fisheries Research.

Column	Туре	Null?	Description
code	character(2)	No	2-digit code for each unique data collection method.
meth_code	character(3)		3-char MFish fishing method code.
task_code	character(4)		4-char code for the generic task e.g. TRWL=trawling.
descrptn	character(60)	No	Description of method code.

Indexes:

"pk meth codes" PRIMARY KEY, btree (code)

Check constraints:

"meth codes code check" CHECK (code ~ '[0-9]*'::text)

5.12 Table 12: t_nation

Comment: ISO standard country names and codes.

Column	Туре	Null?	Description
country	character(40)		Country name.
iso_2_char	character(2)		Country ISO standard 2-letter code.
iso_3_char	character(3)		Country ISO standard 3-letter code.
iso_num	smallint	No	Country ISO standard 3-digit code.

Indexes:

"pk_nation" PRIMARY KEY, btree (iso_num)

5.13 Table 13: species desc

Comment: Complete listing of all species description codes and their meaning.

Column Type Null? Description

code character varying(2) No 1st character for main group;

e.g. Fish, Shellfish, Reptiles, etc.; 2nd character for sub-group; e.g. Billfish, Lightfish,

etc.

descrptn character varying (20) No Description of the species usage

code.

Indexes:

"pk_species_desc" PRIMARY KEY, btree (code)

Check constraints:

"species_desc_code_check" CHECK (code::text ~ '[A-Z][A-Z-]'::text)

5.14 Table 14: species_usage

Comment: Complete listing of all species code usages and their meaning.

Column Type Null? Description

code character varying(1) No 1-character code for the usage of

a species code.

descrptn character varying(8) No Short 8-character description

used in query screen displays.

long desc character varying (60) No Long 60-character description

used in reports.

Indexes:

"pk_species_usage" PRIMARY KEY, btree (code)

Check constraints:

"species usage code check" CHECK (code::text ~ '[A-Z]'::text)

5.15 Table 15: species_master

Comment: Master species code table

Column	Туре	Null?	Description
code	character(3)	No	3-character (uppercase) unique code for the species, or other taxa.
com_name	character varying(40)	Preferred common name for the species.
sci_name	character varying(8	30)	Scientific name for the species.
oth_names	character varying(160)	Other names associated with the species.
notes	text		Any notes about features, peculiarities etc. of the species.
usage	character varying(1)	Describes whether code is for ITQ, Research etc, O=Obsolete code. Refer species_usage.
descrptn	character varying(2	2)	Code for description of species - fish, shellfish, etc. Refer species_desc.
family_com	character varying(40)	Common family name.
family_sci	character varying(4	40)	Scientific family name.
key	character varying(5)	Identification key. First character represents the type of fish: B=Bony fish; C=Cartilaginous fish. Numbers refer to the genera identification key in Paulin C, Stewart A, Roberts C, McMillan P. 1989. New Zealand Fish. A complete Guide. 279p. ISBN 0-477-01427-5.
pref_meas_meth	character varying(3	3)	List of up to 3 preferred measurement method codes. Refer t_fish_meas_codes.
max_length	smallint		Maximum length recorded (to be used only as a guide)
mtab_code	smallint		Integer code to identify species for use in the Minitab statistical software or other software.

aphia id integer

Key to link to World Register of
Marine Species (WoRMS),
www.marinespecies.org .

Indexes:

"pk_species_master" PRIMARY KEY, btree (code)

Foreign-key constraints:

"fk_species_master_desc" FOREIGN KEY (descrptn) REFERENCES rdb.species_desc(code)

"fk_species_master_usage" FOREIGN KEY (usage)
REFERENCES rdb.species usage(code)

5.16 Table 16: t_samp_sel_codes

Comment: Complete list of 1-digit codes for the method by which fish have been selected for length frequency sampling.

Column Type Null? Description

samp sel code character(1)
No 1-character code for method of

sample selection.

descrptn character(60) No Description of sample selection

code.

Indexes:

"pk samp sel codes" PRIMARY KEY, btree (samp sel code)

5.17 Table 17: t_sex_codes

Comment: Complete list of codes for the sex of a fish. May also be used to distinguish gonad and egg stages for some female fish.

Column Type Null? Description

sex_code character(1) No 1-character code for sex of fish.

descrptn character(60) No Description of sex code.

Indexes:

"pk sex codes" PRIMARY KEY, btree (sex code)

5.18 Table 18: t_stom_cond_codes

Comment: Complete list of codes for the condition of digested prey in stomachs.

Column Type Null? Description

stom cond code character(1) No 1-character code for prey

digestion condition.

descrptn character(60) No Description of digestion

condition code.

Indexes:

"pk_stom_cond_codes" PRIMARY KEY, btree (stom_cond code)

5.19 Table 19: t_stom_state_codes

Comment: Complete list of codes for state of fullness of stomach.

Column Type Null? Description

stom state code character(1) No 1-character code for state of

stomach fullness.

descrptn character(60) No Description of stomach state

code.

Indexes:

"pk_stom_state_codes" PRIMARY KEY, btree (stom_state_code)

5.20 Table 20: t_vessels

Comment: List of vessel names & codes used in Fisheries Research data.

Column Type Null? Description

code character(3) No 3-character lowercase vessel name

code.

name character varying (50) No Vessel name.

comments character varying

Indexes:

"pk vessels" PRIMARY KEY, btree (code)

Check constraints:

"t vessels code check" CHECK (code ~ '[a-z0-9]'::text)

5.21 Table 21: t_wgt_meth_codes

Comment: Complete list of codes for the method by which the sample weight was derived.

Column Type Null? Description

wgt meth code character(1) No 1-character code for method of

weighing sample/catch.

descrptn character(60) No Description of weighing method

code.

Indexes:

"pk_wgt_meth_codes" PRIMARY KEY, btree (wgt meth code)

5.22 Table 22: t_wing_dist_codes

Comment: Complete list of codes describing how the distance between the trawl wings was derived.

Column Type Null? Description

wing_dist_code character(1) No 1-character code for method of

deriving trawl wing spread.

descrptn character varying(60) No Description of trawl wing spread

code.

Indexes:

"pk_wing_dist_codes" PRIMARY KEY, btree (wing_dist_code)

MAF Fisheries Project Management Tables

5.23 Table 23: t_proj_header

Comment: Header information for Marine Research projects.

Column	Туре]	Null?	Description
proj_code	character	varying(6)	No	Unique project code, used as project identifier in other tables.
fmis_accno	character	varying(5)		FMIS/Finance1 account number associated with the project, assigned for approved projects.
title	character	varying(180	0)	Title of the project.
leader	character	varying(30))	Project leader's name.
background	text			Background information about the project.
objectives	text			Detailed summary of the overall objectives of the project.
keywords	character	varying(240	0)	Important keywords associated with the project.
team	character	varying(180	0)	Staff involved in the project. Leader's name first.
reviewers	character	varying(60))	Names of people asked to review the project.
status	character	varying(1)		Status of the project - Proposed, Approved, Not Approved, Discontinued, or Completed.
date_approved	character	varying(11))	Date (Mmm yyyy) the project was approved by Manager, Marine Research, Greta Point.
date_started	character	varying(11))	Starting date (Mmm yyyy) of the project.
date_compltd	character	varying(11))	Completion date (Mmm yyyy) of the project.
comments	text			Any other comments related to the project.

Indexes:

[&]quot;pk_proj_header" PRIMARY KEY, btree (proj_code)

5.24 Table 24: t_proj_contract

Comment: Information on yearly contracts drawn up for each project with MAF Policy.

Column	Туре	Null?	Description
proj_code	character varying(6) No	Unique project code, used as project identifier in other tables.
proj_year	smallint	No	Year for which the project contract was drawn up (financial year beginning 1st July).
objectives	text		Detailed summary of the overall objectives of the year project contract.
fte	numeric(4,2)		Full Time Equivalent index. A measure of how many full time staff are needed for the contract period.
operating	character varying(7)	Operating budget for the contract period.
capital	character varying(7)	Capital budget for the contract period.
vessel_time	character varying(6	0)	Amount of vessel time needed for the contract period.
date_reviewed	character varying(1	1)	Date (dd Mmm yyyy) of review of the contract.
funding	character varying(6	0)	Source of funding (if other than MAF Policy).
comments	text		Any other comments related to the contract.

Indexes:

"pk_proj_contract" PRIMARY KEY, btree (proj_code, proj_year)

Foreign-key constraints:

"fk_ref_proj_contract_header" FOREIGN KEY (proj_code)
REFERENCES rdb.t_proj_header(proj_code)

6 rdb business rules

6.1 Introduction to business rules

The following are a list of business rules applying to the **rdb** database. A business rule is a written statement specifying what the information system (i.e., any system that is designed to handle market sampling data) must do or how it must be structured.

There are three recognised types of business rules:

Fact Certainty or an existence in the information system.

Formula Calculation employed in the information system.

Validation Constraint on a value in the information system.

Fact rules are shown on the ERD by the cardinality (e.g., one-to-many) of table relationships. Formula and Validation rules are implemented by referential constraints, range checks, and algorithms both in the database and during validation.

Validation rules may be part of the preloading checks on the data as opposed to constraints or checks imposed by the database. These rules sometimes state that a value <u>should</u> be within a certain range. All such rules containing the word 'should' are conducted by preloading software. The use of the word 'should' in relation to these validation checks means that a warning message is generated when a value falls outside this range and the data are then checked further in relation to this value.

6.2 Summary of rules

Area codes table (area_codes)

code Area code, must have a value entered that is an unique alphanumeric code of

not more than 4 characters.

descrptn Must have a value entered than can be any combination of ASCII characters.

Trawl door distance codes table (t_door_dist_codes)

door code Must have a value entered that is an unique 1-character alphanumeric code.

descrptn Must have a value entered than can be any combination of ASCII characters.

Fish measurement method codes table (t_fish_meas_codes)

fish meas code Must have a value entered that is an unique 1-character alphanumeric code.

descrptn Must have a value entered than can be any combination of ASCII characters.

Fish observation codes table (t_fish_obs_codes)

fish obs code Must have a value entered that is an unique 1-character alphanumeric code.

descrptn Must have a value entered than can be any combination of ASCII characters.

Position fix method codes table (t_fix_meth_codes)

fix meth code Must have a value entered that is an unique alphanumeric code of not more

than 2 characters.

Beaufort scale, wind speed, and sea condition table (force_chk)

force Must have an integer entered that is a valid Beaufort Scale number that is

within the range of 0 to 12.

min_spd Must be an integer and should be within the reasonable range of 0 to 30.

max spd Must be an integer and should be within the reasonable range of 1 to 127.

min_seac Must be an integer as listed in Appendix 1 and should be within the

reasonable range of 0 to 8.

max seac Must be an integer as listed in Appendix 1 and should be within the

reasonable range of 1 to 9.

Trawl headline height measurement method codes table (t_headline_codes)

headline_code Must have a value entered that is an unique 1-character alphanumeric code.

descrptn Must have a value entered than can be any combination of ASCII characters.

Gonad staging system table (t_gon_sys_desc)

stage meth Must have a value entered that is an unique alphanumeric code of not more

than 2 characters.

spp list Each species code in the list must be a valid code as listed in the *curr spp*

table.

Gonad staging method codes table (t_gon_stg_meth)

stage meth Must have a value entered that is an alphanumeric code of not more than 2

characters.

stage type Must have a value entered and be a valid stage type code as listed in

Appendix 1.

gonad stage Must have a value entered that is a 1-character alphanumeric code

must be unique.

descrptn Must have a value entered than can be any combination of ASCII characters.

Length/weight coefficients table (lw_coeff)

spp_code Must have a value entered that is a valid species code as listed in the

curr spp table.

sex Must be an integer that is either equal to "1" or "2".

ts_default Must be either equal to "Y" or null.

lw coeff a Should be a real number within the reasonable range of 0.0001 to 0.7.

lw coeff b Should be a real number within the reasonable range of 0.5 to 3.8.

lw coeff c Should be a real number within the reasonable range of 0.2 to 0.4.

meas_meth Must be a valid fish measurement method code as listed in the

t fish meas codes table.

Data collection gear method codes table (meth_codes)

code Must have a value entered that is an alphanumeric code of not more than 2

characters.

meth_code Must be a valid Ministry of Fisheries method code as listed in Appendix 1.

task code Must be a valid task code as listed in Appendix 1.

Data collection gear method codes table (meth_codes)

country Must be a valid country name as recognised by the International Standards

Organisation.

ISO 2 char Must be a 2-character uppercase alphabetic code.

ISO_3_char Must be a 3-character uppercase alphabetic code.

ISO_num Must be an integer between 4 and 900.

Species description codes table (species_desc)

code Must have a value entered that is an uppercase alphabetic code of not more

than 2 characters. Where: the first character must be within the range of A-Z; the second character can be either between the range of A-Z or a hyphen

character "-".

descrptn Must have a value entered than can be any combination of ASCII characters.

Species usage codes table (species_usage)

code Must have a value entered that is an unique 1-character uppercase alphabetic

code.

descrptn Can have any combination of up to 8 ASCII characters.

long desc Can have any combination of up to 60 ASCII characters.

Master species codes table (species master)

code Must have a value entered that is an unique 3-character uppercase alphabetic

code.

com name Can have any combination of up to 40 ASCII characters.

sci name Can have any combination of up to 80 ASCII characters.

oth names Can have any combination of up to 160 ASCII characters.

usage Must have a valid species usage code as listed in the *species usage* table.

descrptn Must have a valid species description code as listed in the *species desc* table.

family com Can have any combination of up to 40 ASCII characters.

family sci Can have any combination of up to 40 ASCII characters.

key The first character must be equal to either a "B" or a "C". The second to fifth

characters must be a number that matches a genera identification key as found in Paulin C, Stewart A, Roberts C, McMillan P. 1989. *New Zealand Fish. A complete Guide*. 279p. ISBN 0-477-01427-5. Valid ranges are listed

in Appendix 1.

pref meas meth Each character of this field must be a valid fish measurement method code as

listed in the *t* fish meas codes table.

max length Must be a integer between the range of 0-9999.

mtab code Must be a unique integer between the range of 0-999.

Current species codes view (curr spp)

The current species codes view must contain all records in the *species_master* table where the *usage* field is not equal to "O", i.e., an obsolete code.

Sample selection method codes table (t_samp_sel_codes)

samp_sel_code Must have a value entered that is an unique 1-character alphanumeric code.

descrptn Must have a value entered than can be any combination of ASCII characters.

Sex codes table (t sex codes)

sex code Must have a value entered that is an unique 1-character alphanumeric code.

descrptn Must have a value entered than can be any combination of ASCII characters.

Stomach contents condition codes table (t_stom_cond_codes)

stom cond code Must have a value entered that is an unique 1-character alphanumeric code.

descrptn Must have a value entered than can be any combination of ASCII characters.

Stomach state of fullness codes table (t stom state codes)

stom state code Must have a value entered that is an unique 1-character alphanumeric code.

descrptn Must have a value entered than can be any combination of ASCII characters.

Weighing method codes table (t wgt meth codes)

wgt meth code Must have a value entered that is an unique 1-character alphanumeric code.

Trawl wing distance codes table (t_wing_dist_codes)

wing_dist_code Must have a value entered that is an unique 1-character alphanumeric code.

descrptn Must have a value entered than can be any combination of ASCII characters.

Vessel codes table (vessels)

code Must have a value entered that is an unique 3-character alphanumeric code.

Appendix 1 – Reference code tables

Beaufort scale (force)

<i>Force</i>	<u>Description</u>	Mean Wind Speed (knots)
0	Calm	< 1
1	Light air	1 - 3
2	Light breeze	4 - 6
3	Gentle breeze	7 - 10
4	Moderate breeze	11 –16
5	Fresh breeze	17 - 21
6	Strong breeze	22 - 27
7	Near gale	28 - 33
8	Gale	34 - 40
9	Strong gale	41 - 47
10	Storm	48 - 55
11	Violent storm	56 - 63
12	Hurricane	> 64

Sea condition codes (min_seac & max_seac)

<u>Code</u>	<u>Description</u>	Wave Height (metres)
0	Calm, glassy	0
1	Calm	0 - 0.1
2	Smooth	0.1 - 0.5
3	Slight	0.5 - 1.0
4	Moderate	1.0 - 2.5
5	Rough	2.5 - 6.0
6	Very Rough	4.0 - 6.0
7	High	6.0 - 10.0
8	Very High	10.0 - 15.0
9	Huge	Over 15.0

Stage type code (stage_type)

<u>Stage type</u>	<u>Description</u>
1	Male
2	Female
E	Eggs

Ministry of Fisheries method codes (meth_code)

Method code BES BLL BOT BPT DAL DAS DIV HAL MWT PAL POT PUS RLP SCT SEN	Description Beach seine Bottom longline Bottom trawl Bottom pair trawl Dahn/drop line Danish seine Diver Handline Midwater trawl Pole line Pots (generic) Purse seine Rock lobster pot Scampi trawl Set (gill) net
POT PUS RLP	Pots (generic) Purse seine Rock lobster pot
SEN SQJ SLL TRL TRO UNK	*

Data collection method task codes (task_code)

<u>Task code</u>	<u>Description</u>
ACOU	Acoustics
BATH	Bathymetry/oceanography
CTDS	CTD probes
DIVE	Diving
DRGE	Dredge
FLOU	Flourimeters
GRAB	Grab
LINE	Line
NETS	Nets
PHOT	Photography
POTS	Pots
SEIN	Seine
TRAP	Traps
TRWL	Trawl

Species identification keys (key)

Fish type	<u>Key range</u>
Cartilaginous fish (sharks and rays)	C1 - C30
Bony fish	B1 - B178