Database documentation: rocklob

K. A. Mackay

NIWA Fisheries Data Management Database Document Series

Updated Dec-2015

Contents

1	Database documentation series	4
2	Abundance of early life history stages of the rock lobster	4
3	Data structures	5
3.1	Table relationships	5
3.2	Database design	8
4	Table summaries	12
5	rocklob tables	13
5.1	Table 1: t_locations	13
5.2	Table 2: t_catch	14
5.3	Table 3: t_puer_lfreq	15
5.4	Table 4: t_puer_stage	16
5.5	Table 5: t_trip	17
5.6	Table 6: t_station	19
5.7	Table 7: t_stat_comm	27
5.8	Table 8: t_phy_stage	28
5.9	Table 9: t_evpsumm	29
5.10	0 Table 10: t_dasdata	30
5.1	1 Table 11: t_deploy_meth_codes	31
5.12	2 Table 12: t_stage_codes	32
6	rocklob business rules	37
6.1	Introduction to business rules	37
6.2	Summary of rules	38
7	References	47
App	pendix 1 – Reference Code Tables	48

List of Figures

Revision History

Version	Change	Date	Person
			responsible
1.0	Initial version as NIWA Internal Report No.	1998	Kevin Mackay
	26		
1.1	Added business rules? Released as	2000	Kevin Mackay
	NIWA Internal Report No. 70		-
1.2	Explained station_no = 0 for t_evpsumm	15Feb13	D Fisher with K
			Mackay
2.0	Postgres version	Dec 2015	D Fisher, F Wei

1 Database documentation series

The National Institute of Water and Atmospheric Research (NIWA) currently carries out the role of Data Manager and Custodian for the fisheries research data owned by the Ministry for Primary Industries (MPI) formerly the Ministry of Fisheries.

This MPI data set, incorporates historic research data, data collected by MAF Fisheries prior to the split in 1995 of Policy to the Ministry of Fisheries and research to NIWA, and data collected by NIWA and other agencies for the Ministry of Fisheries and subsequently for MPI.

This document is a brief introduction to the rock lobster phyllosoma and puerulus database **rocklob**, and is a part of the database documentation series produced by NIWA.

All documents in this series include an introduction to the database design, a description of the main data structures accompanied by an Entity Relationship Diagram (ERD), and a listing of all the main tables. The ERD graphically shows the relationships between the tables in **rocklob**.

This database has been implemented as a schema within the Postgres database called **fish**.

This document is intended as a guide for users and administrators of the **rocklob** database, and supersedes Mackay (1998) ¹.

2 Abundance of early life history stages of the rock lobster

Red rock lobsters (*Jasus edwardsii*) support one of New Zealand's most valuable fisheries. Understanding larval recruitment processes greatly assist management of this fishery.

Rock lobsters spend several months as phyllosoma larvae tens to hundreds of kilometres offshore. Phyllosomas can disperse large distances: advanced phyllosomas were taken to the seaward extent of east coast trawl transects during trawl surveys and are widespread in the south Tasman Sea. At least recently, advanced (mid- and late-stage) phyllosomas have been much more abundant off the east coast of the North Island south of East Cape than off the east coast of the South Island (Booth & Forman 1995). This pattern appears to be determined by factors that include levels of local rock lobster larval production and the oceanography. Surveys have been carried out since the 1970s using mainly fine-meshed mid-water trawls, but also bottom trawls and bongo nets. Survey designs have include both transects and strata area.

Rock lobsters return to the shore as pueruli. The puerulus stage is the settling stage: it resembles the juvenile in shape and is 9-13mm in carapace length, but is transparent. Puerulus settlement happens when pelagic pueruli cease extensive forward swimming and

take up residence on the substrate or in a crevice collector. Some older pueruli and young juveniles, however, move into collectors after first settling elsewhere.

Key sites to follow levels of settlement on crevice collectors (see Booth *et al.* 1991 for collector design) have been set up in the main rock lobster fishing coasts of New Zealand. Collectors are set in groups of 3-6, with a minimum spacing of 2-3m between individual collectors. At each key site there is a core group; additional groups of collectors are set in both directions along the coast, as conditions allow, 0.1-25km from the core collectors. At most sites, collectors are checked monthly and all lobsters removed. These collectors provide a combined index of:

- a) the number of pelagic pueruli in the water column which are settling;
- b) the result of post-settlement migration, the net number of older animals (older pueruli, and less often, young juveniles) moving onto the collector after having lived on the surrounding sea floor, and animals of similar age moving from the collector to the surrounding sea floor.

The index of annual settlement is the average catch per collector of pueruli, plus post-pueruli up to and including 14.5mm carapace length combined, of the core collectors over the main settlement season. The main settlement season varies between 6 and 10 months according to site, so values of annual index are not always directly comparable between sites.

Juvenile abundance has been followed at three locations (Gisborne, Wellington, and Stewart Island, the last two having several sites within the location) to check whether peaks and troughs in settlement are mirrored in the abundance of 1-3 year olds.

Knowing the abundance of early life history stages (phyllosomas, pueruli, and young juveniles) may lead researchers to the factors that drive fishery recruitment. It may be possible to relate changes in levels of settlement to changes in breeding stock abundance, abundance of advanced larvae, and to changes in the ocean climate. Information on year-to-year settlement levels may be used to predict trends in recruitment, provide early warning of over fishing, and indicate to what extent recruitment varies from year to year. A discussion of the abundance of early life history stages of lobsters and the implications to fishery management are detailed in Booth *et al.* 1998.

3 Data structures

3.1 Table relationships

This database contains several tables. The ERD for **rocklob** (Figure 1) shows the physical data model structure¹ of the database and its entities (each entity is implemented as a database *table*) and relationships between these tables. Each table represents an object, event, or concept in the real world that has been represented in the database. Each *attribute* of a table is a defining property or quality of the table.

5

¹ Also known as a database *schema*.

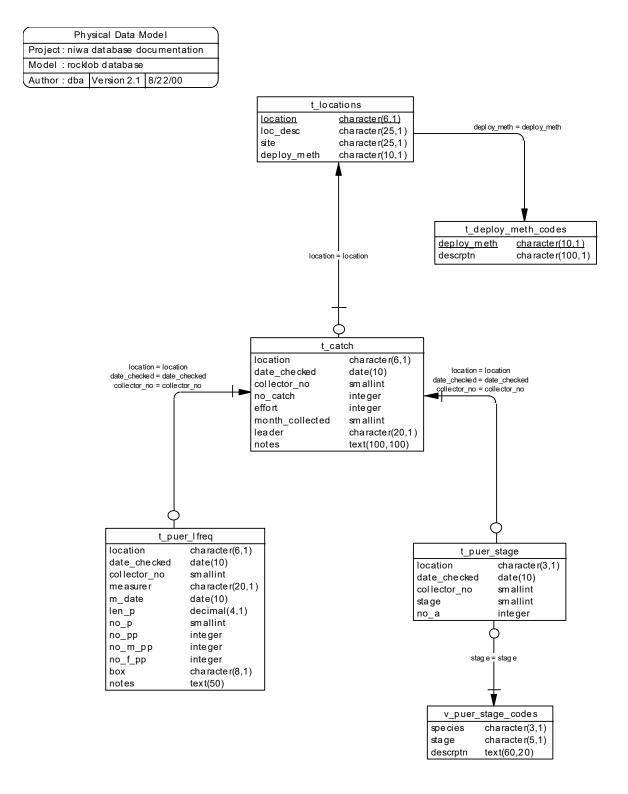


Figure 1: Entity Relationship Diagram (ERD) showing the relationships between the tables that hold data from puerulus settlement collectors and juvenile abundance surveys.

All of the table's attributes are shown in the ERD. The underlined attributes represent the table's primary key². This schema is valid regardless of the database system chosen, and it can remain correct even if the Database Management System (DBMS) is changed. Most of the tables in the **rocklob** database also contain special attributes, called foreign keys³.

Section 5 shows a listing of all the **rocklob** tables as implemented by the Postgres RDBMS. As can be seen in the listing of the tables, each table has a primary key on it. Primary keys are generally listed using the format:

```
Indices: index name PRIMARY KEY, btree (attribute [, attributes ])
```

where the attribute(s) make up the primary key (the key attributes) and the index name is the primary key name. Note that the typographical convention for the above format is that square brackets [] may contain more than one item or none at all.

The primary key prevents records with duplicate key values from being inserted into the table; e.g., a new survey being inserted with an existing survey number, and hence ensures that every record can be uniquely identified.

The **rocklob** database is implemented as a relational database. That is, each table is a special case of the mathematical construct known as a *relation* and hence elementary relation theory is used to deal with the data within tables and the relationships between them. All relationships in **rocklob** are of the type *one-to-many*⁴. This is shown in the ERD by connecting a single line (indicating 'many') from the child table to the parent table with an arrowhead (indicating 'one') pointing to the parent (e.g., *t_station* to *t_trip* in Figure 2). For example, consider the relationship between the tables *t_trip* (the parent table) and *t_station* (the child table). Any one trip in *t_trip* can have one or more stations in *t_station*, but any one station can only be a part of one trip.

Every relationship has a mandatory or optional aspect to it. That is, if a relationship is mandatory, then it has to occur and least once, while an optional relationship might not occur at all. For example, in Figure 2, consider that relationship between the table *t_station* and it's child table *t_phy_stage*. The symbol "O" across the relationship line by the child *t_phy_stage* means that a station record can have zero or many phyllosoma catch records, while the bar across the relationship line by the parent *t_station* means that for every phyllosoma catch record there must be a matching station record.

² A primary key is an attribute or a combination of attributes that contains a unique value to identify that record.

³ A foreign key is any attribute, or a combination of attributes, in a table that is a primary key of another table. Tables are linked together through foreign keys.

⁴ A one-to-many relationship is where one record (the *parent*) in a table relates to one or many records (the *child*) in another table; e.g., one survey in *t_trip* can have many stations in *t_station* but any one station can only come from one survey.

These relationships are enforced in the database by the use of foreign key constraints⁵. Foreign key constraints do not allow *orphans* to exist in any table; i.e., where a child record exists without a related parent record. This may happen when: a parent record is deleted; the parent record is altered so the relationship is lost; or a child record is entered without a parent record. All constraints in **rocklob** prevent the latter from occurring. Foreign key constraints are shown in the table listings by the following format:

```
Referential: error message (attribute[, attribute]) INSERT parent table (attribute[, attribute])
```

For example, consider the following constraint found in the table *t* station:

```
Foreign-key constraints:
    "fk_t_station_t_trip" FOREIGN KEY (trip_code) REFERENCES
    t trip(trip code)
```

This means that the value of the attribute $trip_code$ in the current record must already exist in the parent table t_trip or the record will be rejected and an error message will be displayed. Most tables are indexed. That is, attributes that are most likely to be used for searching, such as $trip_code$, have like values linked together to optimise search times.

Such indices are shown in the table listings (Section 5) by the following syntax:

```
Indexes: index name btree (attribute[, attribute])
```

Note that indices may be *simple*, pointing to just one attribute, or *composite*, pointing to more than one attribute.

3.2 Database design

3.2.1 Puerulus collector and juvenile abundance monitoring

Pueruli and young juveniles of *J. edwardsii* occur most abundantly in shallow waters. Around New Zealand, pueruli occur intertidally in crevices, holes, and indentations under boulders. Artificial crevice collectors, deployed by various methods (shore, sea floor, and surface/midwater), are used in locations around the country as a means of measuring abundance of settlement. The abundance of 1-3 year old juveniles are surveyed in several locations around New Zealand as a check on the usefulness of collectors. Locations of crevice collectors and juvenile abundance surveys are stored in the table *t_locations* (Table 1). Each location is identified by a unique location code stored in the attribute *location*. Juvenile abundance monitoring is distinguished from puerulus collectors by the suffix "J" in *location*. The attribute *deploy_meth* is a code used to identify the method by which monitoring was done; e.g., as shore- or boat-deployed crevice collectors; or scuba diver abundance counts. Full descriptions of the *deploy_meth* code are listed in the table *t deploy meth codes* (Table 11).

⁵ Also known as referential constraints or integrity checks.

Periodically (usually monthly) these collectors and 'natural' settlement (such as intertidal beaches, natural crevices and indentations in boulders) are checked for pueruli settlement and juvenile abundance is monitored. The details of such checks, including numbers of pueruli caught and juveniles seen, are stored the table t catch (Table 2). Each check is uniquely identified by the attributes: location, date checked; and collector no, a unique sequential number given to each collector at a location. The total number of all J. edwardsii caught for each collector during the check or seen during a dive are in stored in *no catch*. At the time of the check, lobsters are not staged so there is no distinction made been pueruli and young juveniles until each lobster is measured and staged at a later date. Effort, as measured by total dive times in minutes, for juvenile abundance surveys is stored in the attribute effort. The month for which the collector was checked for is stored as an integer from 1 to 12 in the attribute month collected. Often collectors are checked early the next month for the previous months pueruli settlement. Similarly, the year for which the collector was checked for is stored in the attribute year collected. There are specific occasions where the count of pueruli settlement for December is actually made in January of the next year.

Historically, all lobsters caught by the collectors at certain locations were measured by carapace length. These length frequency data are stored in the table *t_puer_lfreq* (Table 3). Each record in this table stores the number of lobsters per millimetre carapace length class. Lobsters were also recorded as being either pueruli or post-pueruli. So, for each millimetre length class, *t_puer_lfreq* records the numbers of pueruli (*no_p*) and the numbers of juveniles (post-pueruli) (*no_pp*). The smaller length classes having only pueruli, the larger lengths having only post-pueruli, and in some uncommon cases, a length class may have counts for both.

Counts of juveniles seen during abundance monitoring are also stored in t puer lfreq.

Currently, all pueruli and post-pueruli lobsters are staged based on their life history. These staging data are stored in the table *t_puer_stage* (Table 4). Staging only takes place on lobsters up to 14.5mm carapace length as it is generally accepted that this is the maximum size that lobsters can grow in one month (the time between collector checks). Lobsters below this size are staged to a four-point scale. The number of all lobsters over this size is also recorded as a measure of post-settlement migration.

Descriptions of the pueruli stages are listed in *v_puer_stage_codes*, which is a view on the table *t stage codes* (Table 12).

3.2.2 Phyllosoma trawl surveys

The phyllosoma trawl survey data model is an adaptation of the trawl survey data model (Mackay 1998).

Several trawl surveys have been carried out since the 1970s to define the extent of occurrence and to index abundance of advanced stage phyllosoma. Details of such trips are stored in the table *t_trip* (Table 5), including start/finish dates, areas surveyed, and parameters of trawl gear used.

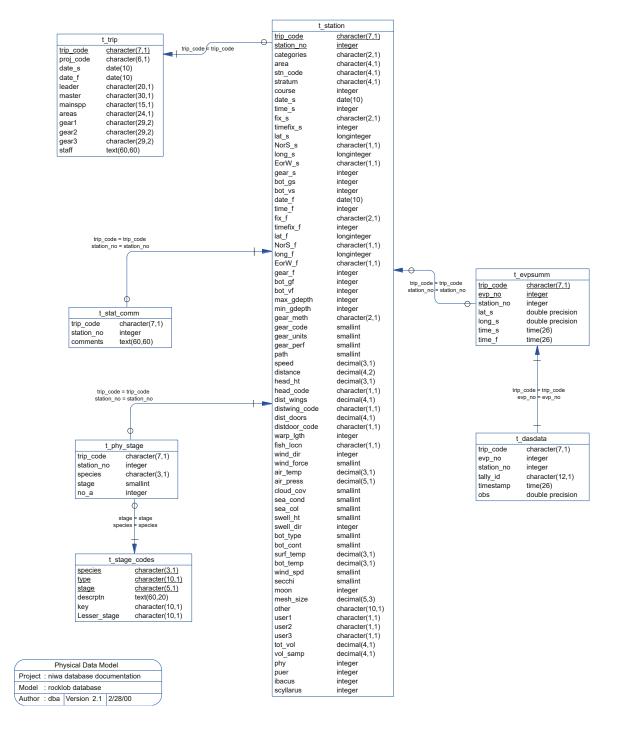


Figure 2: ERD showing the relationships between the tables for the phyllosoma trawl surveys.

Surveys may or may not have included strata as part of the methodology, but where they were involved no details of strata are recorded in **rocklob**. Unlike other stratified trawl surveys, phyllosoma surveys do not involve random stations nor are catches scaled up to any area.

These surveys all involve transects, with a number of stations (where trawl gear was deployed) occurring along the transect path. Station details are stored in the table *t_station* (Table 6). Catch details from each station are included within t_station; e.g., total volume caught, and volume sampled. Only 4 items within each catch are recorded so each has it's own attribute within t_station for catch numbers. These attributes are: *phy* for *Jasus* sp. phyllosomas; *puer* for pueruli; *ibacus* for *Ibacus* sp. phyllosoma; and *scyllarus* for *Scyllarus* sp. phyllosoma.

Comments on stations are stored in a separate table *t_stat_comm* (Table 7). Having the comments in their own tables means that each station can have none or as many comments as a user wishes.

Measurements taken from individual phyllosoma are stored in *t_phy_stage* (Table 8). Currently, only life history stages are recorded for individual specimens, although, this table can be expanded to include other measurements if required.

Two views of this table (v_scyllarus and v_jasus) exist to provide phyllosoma stage data for Scyllarus sp. and Jasus sp. respectively. A view is a table that does not have any existence in its own right but is instead a snapshot of data derived from one or more base tables.

One of the aims of phyllosoma trawl surveys is to compare abundance data with changes in ocean climate. To this end, on RV Tangaroa surveys, physical oceanographic data such as surface temperature, salinity, and sea currents are logged real-time from the vessel's sensors by the Data Acquisition System (DAS). DAS controls data logging automatically by monitoring the trawl gear warp length starting logging when the trawl gear is let out, stopping when the trawl gear is hauled. Data are recorded into discrete envelopes of time and each envelope is roughly comparable with a station. Each envelope is given a sequential envelope number, with summary information such as matching station number and start/finish time stored in *t_evpsumm* (Table 9). Instances of unmatched stations are assigned a station number of 0. Envelopes were sometimes created when no gear was deployed.

Actual data recorded by the DAS for an envelope are stored in *t_dasdata* (Table 10) with each record having a timestamp (*timestamp*) to say when it was recorded, an identifier (*tally_id*) to say which sensor is being measured, and an observed value (*obs*) from the sensor.

Explanations for all phyllosoma and puerulus developments stages are stored in the table *t_stage_codes* (Table 12). From this table, there are two views, which show explanations of development stage codes for puerulus (*v_puer_stage_codes*) and phyllosoma (*v_phy_stage_codes*) exclusively.

4 Table summaries

This database is arranged as a set of eleven main tables, two views of species-specific data, and a further two views for codes.

The following is a listing and brief outline of the tables contained within **rocklob** pertaining to puerulus settlement and juvenile abundances:

- 1. **t_locations**: contains the full name of each location code, site within a location and the method of puerulus collector deployment or juvenile survey.
- 2. **t_catch**: contains details for each puerulus collector check or juvenile abundance survey, including location code, date, and numbers of pueruli caught.
- 3. **t_puer_lfreq** : contains carapace length data for pueruli and juveniles from collectors or abundance surveys during a check.
- 4. **t_puer_stage** : contains life history stage data for individual pueruli caught by collectors during a check.

The following is a listing and brief outline of the tables contained within **rocklob** pertaining to phyllosoma trawl surveys:

- 5. **t_trip**: contains profile information on all trips.
- 6. **t_station**: contains data on location, gear used and environment at each station within a trip.
- 7. **t_stat_comm**: contains comments for a station in a trip.
- 8. **t_phy_stage** : contains codes for levels of life history development for individual phyllosoma.
 - (a) **v_scyllarus**: a view of the *t_phy_stage* table containing all scyllarus (SHL) phyllosoma life history stage data.
 - (b) **v_jasus**: a view of the *t_phy_stage* table containing all Jasus sp. phyllosoma (PHY) life history stage data.
- 9. **t_evpsumm**: contains start and finish times and positions, and station numbers contained in, envelopes of DAS data.
- 10. **t_dasdata** : contains filtered data from the vessel's sensors collected in DAS envelopes

The following are the common code tables used by both puerulus/juvenile and phyllosoma surveys:

- 11. **t_deploy_meth_codes**: contains codes and their descriptions of the methods used to deploy puerulus and juvenile collectors.
- 12. **t_stage_codes**: contains crayfish development stage codes and their descriptions, from phyllosoma larvae to juveniles.
 - (a) **v_puer_stage_codes :** contains puerulus development stage codes and their descriptions.
 - (b) **v_phy_stage_codes :** contains phyllosoma development stage codes and their descriptions.

5 rocklob tables

The following are listings of the tables in the **rocklob** database, including attribute names, data types (and any range restrictions), and comments.

See Appendix 1 for attributes that have comments referring to the Trawl Instructions (unpub. NIWA report).

5.1 Table 1: t_locations

Comment: Lists the location used for the deployment of pueruli collectors and juvenile surveys, the location code, and the data collection method.

Column	Туре	Null?	Description
location	character varying	y(6) No	6-char code for the location of the collector. Format (1) = "AAAnnn" where "AAA" = location abbreviation and "nnn" = site number. Format (2) = "AAAnnJ" where "AAA" = location abbreviation and "nnn" = site number and "J" = juvenile abundance survey.
loc_desc	character varying	g (25)	Location name or description.
site	character varying	g (25)	Site name within a location.
deploy_meth	character varying	g(10)	Method of collector deployment used at the location. Refer t_deploy_meth_codes. e.g. BOAT, DIVER, SHORE, SUSPENDED.

```
Indexes:
```

```
"pk t locations" PRIMARY KEY, btree ("location")
```

Foreign-key constraints:

"fk_t_locations_t_deploy_meth_codes" FOREIGN KEY (deploy_meth) REFERENCES rocklob.t deploy meth codes(deploy meth)

5.2 Table 2: t_catch

Comment: Shows number of pueruli caught on each collector at each check or juveniles counted at each abundance survey, with comments.

Column	Туре	Null?	Description
location	character varying(6) No	6-char code for the location of the collector.
date_checked	date	No	Date the collector was checked.
collector_no	smallint	No	Each collector has been given a unique number.
no_catch	integer		Number of pueruli and/or juveniles caught/counted.
effort	integer		Effort (time in minutes) taken for the catch.
year_collected	integer		Year that the catch data represents.
month_collected	smallint		Month (1-12) that the catch data represents.
leader	character varying(2	0)	Name of trip leader.
notes	text		Comment for each collector.
<pre>Indexes: "pk_t_catch" PRIMARY KEY, btree ("location", date_checked, collector_no) Check constraints: "t_catch_month_collected_check" CHECK (month_collected >= 1 AND</pre>			

5.3 Table 3: t_puer_lfreq

Comment: Table of pueruli and juvenile length frequency data.

Column	Type	Null?	Description
location	character varying(6)	No	6-char code for the location of the collector.
date_checked	date	No	Date the collector was checked.
collector_no	smallint	No	Each collector has been given a unique number.
measurer	character varying(20))	Person who recorded the length of the animals.
m_date	date		Measurement date.
len_p	numeric(4,1)		Carapace length of the peurulus.
no_p	smallint		Number of pueruli.
no_pp	integer		Number of juveniles (post- puerulus)
no_m_pp	integer		Number of male juveniles (post-puerulus).
no_f_pp	integer		Number of female juveniles (post-puerulus).
box	character varying(8)		Box and container number where the animals are kept.
notes	text		
Foreign-key constraints: "fk_t_puer_lfreq_t_catch" FOREIGN KEY ("location", date_checked, collector_no) REFERENCES rocklob.t_catch("location", date_checked, collector_no)			

5.4 Table 4: t_puer_stage

Comment: Table of pueruli life history stage data.

Column	Туре	Null?	Description
location	character varying(6) No	6-char code for the location of the collector.
date_checked	date	No	Date the collector was checked.
collector_no	smallint	No	Each collector has been given a unique number.
stage	character varying(5)	Code for life history stage. Refer v_puer_stage_codes (stage).
no_a	integer		Number of animals at this stage.
			"location", date_checked, collector_no) date_checked, collector_no)

5.5 Table 5: t_trip

Comment: Profile information on all trips held in this database.

Column	Type	Null?	Description
trip_code	character varying(7) No	Trip code - 3 char vessel name, 2 digit year and 2 digit trip number.
proj_code	character varying(6) No	Project or programme code for this trip.
date_s	date		Start date for the trip.
date_f	date		Finish date for the trip.
leader	character varying(2	0)	Name of trip leader.
master	character varying(3	0)	Name of vessel master(s).
areas	character varying(2	4)	Codes of area(s) surveyed separated by commas (,).
mainspp	character varying(1	5)	Target species code(s) separated by commas.
gear1	character varying(2	9)	gear_meth code, codend, liner & cover mesh sizes (mm), ground rope, sweep & bridle lengths (m) separated by commas for 1st gear code used.
gear2	character varying(2	9)	gear_meth code, codend, liner & cover mesh sizes (mm), ground rope, sweep & bridle lengths (m) separated by commas for 2nd gear code used.
gear3	character varying(2	9)	gear_meth code, codend, liner & cover mesh sizes (mm), ground rope, sweep & bridle lengths (m) separated by commas for 3rd gear code used.
staff	text		Name(s) of all staff on the trip.

Indexes:

[&]quot;pk_t_trip" PRIMARY KEY, btree (trip_code)

5.6 Table 6: t_station

Comment: Data on location, gear used and environment at each station on a trip.

Column	Туре	Null?	Description
trip_code	character varying(7) No	Trip code as defined in the trip table.
station_no	integer	No	Station number - unique within a trip.
categories	character varying(2)	<pre>2 separate user-defined categories; definitions should be in trip comments.</pre>
area	character varying(4)	Code describing area, refer to rdb.area_codes.
stn_code	character varying(4)	Code for a permanent station occupied repeatedly.
stratum	character varying(4)	Stratum number if trip is a stratified survey, else a transect code.
course	integer		Course of vessel during the shot (course-made-good).
date_s	date		Starting date of the shot.
time_s	integer		Starting time (24hr,NZST) of the shot (hhmm format).
fix_s	character varying(2)	Method of fixing position at start of tow, refer rdb.t_fix_meth_codes.
timefix_s	integer		Time (in minutes) elapsed since last position fix at the start of tow.
lat_s	integer		Latitude of vessel at start of tow (ddmmmm format, d=deg., m=min. to 2 implied dec. pl.).

nors_s	character varying(1)	Tow start position hemisphere.
long_s	integer	Longitude of vessel at start of tow (ddmmmmm format - d=deg., m=min. to 2 implied dec. pl.).
eorw_s	character varying(1)	Tow start position meridian.
gear_s	integer	Depth of lowest part of gear (groundrope) at start of the tow (m).
bot_gs	integer	Depth of sea bottom at gear position at start of the tow (m).
bot_vs	integer	Depth of sea bottom at vessel position at start of the tow (m).
date_f	date	Finishing date of the shot.
time_f	integer	Finishing time (24hr,NZST) of the shot (hhmm format).
fix_f	character varying(2)	Method of fixing position at end of tow, refer rdb:t_fix_meth_codes.
timefix_f	integer	Time (in minutes) elapsed since last position fix at end of the tow.
lat_f	integer	Latitude of vessel at end of tow (ddmmmm format, d=deg., m=min. to 2 implied dec. pl.).
nors_f	character varying(1)	Tow finish position hemisphere.
long_f	integer	Longitude of vessel at end of tow (ddmmmmm format, d=deg., m=min. to 2 implied dec. pl.).
eorw_f	character varying(1)	Tow finish position meridian.

gear_f	integer	Depth of lowest part of gear (groundrope) at end of the tow (m).
bot_gf	integer	Depth of sea bottom at gear position at end of tow (m).
bot_vf	integer	Depth of sea bottom at vessel position at end of tow (m).
max_gdepth	integer	Maximum depth of lowest part of gear (groundrope) during the tow (m).
min_gdepth	integer	Minimum depth of lowest part of gear (groundrope) during the tow (m).
gear_meth	character varying(2)	Gear method code, descriptions in rdb.meth_codes.
gear_code	smallint	Code for set of gear used, details in trip record.
gear_units	smallint	Number of units of gear used in the tow.
gear_perf	smallint	Code for performance of gear during the tow, refer to Appendix 1 of the database documentation.
path	smallint	Code describing configuration of path of shot, refer to Appendix 1 of the database documentation.
speed	numeric(3,1)	Average speed through water during shot (knots).
distance	numeric(4,2)	Distance of gear over bottom (nautical miles).
head_ht	numeric(3,1)	Average headline height (m).

head_code	character varying(1)	Code showing how headline height was determined, refer rdb.t_headline_codes.
dist_wings	numeric(4,1)	Average distance between wings (m).
distwing_code	character varying(1)	Code to indicate how distance between the wings was determined for this tow, refer rdb.t_wing_dist_codes.
dist_doors	numeric(4,1)	Average distance between doors of gear (m).
distdoor_code	character varying(1)	Code to indicate how the distance between the doors was determined for this tow, refer rdb.t_door_dist_codes.
warp_lgth	integer	Length of warp during the tow (m) .
fish_locn	character varying(1)	Code to indicate the location of the fish at the net mouth during the shot as observed on the net sonde, refer rdb.t_fish_obs_codes.
wind_dir	integer	Wind direction (degrees true), 999=No wind.
wind_force	smallint	Wind force on Beaufort scale.
air_temp	numeric(3,1)	Air temperature (degrees C).
air_press	numeric(5,1)	Air pressure (millibars).
cloud_cov	smallint	Code describing cloud cover during tow in eighths of sky covered, 0=clear sky.
sea_cond	smallint	Codes describing condition of the sea, refer to Appendix 1 of the database documentation.

sea_col	smallint	Code describing colour of sea, refer to Appendix 1 of the database documentation.
swell_ht	smallint	Code describing height of swell, refer to Appendix 1 of the database documentation.
swell_dir	integer	Direction of the swell (degrees true).
bot_type	smallint	Code describing sea bottom type, refer to Appendix 1 of the database documentation.
bot_cont	smallint	Code describing sea bottom contour, refer to Appendix 1 of the database documentation.
surf_temp	numeric(3,1)	Surface temperature (degrees C).
bot_temp	numeric(3,1)	Temperature at bottom (degrees C).
wind_spd	smallint	Wind speed from anemometer (m/s) (1knot=0.51m/s).
secchi	smallint	Depth at which Secchi disc becomes invisible (m).
moon	integer	Quarters of the moon phase.
mesh_size	numeric(5,3)	Mesh size (cm) of the gear.
other	character varying(10)	Any other details, should be fully commented.
user1	character varying(1)	User-defined field 1. Field should be defined in t_stat_comm.
user2	character varying(1)	User-defined field 2. Field should be defined in t_stat_comm.

user3	character varying(1)	User-defined field 3. Field should be defined in t_stat_comm.
tot_vol	numeric(4,1)	Total volume (litres) of material caught during tow.
vol_samp	numeric(4,1)	Volume (litres) of material sampled.
phy	integer	Number of phyllosomas caught.
puer	integer	Number of pueruli caught.
ibacus	integer	Number of ibacus sp. caught.
scyllarus	integer	Number of scyllarus sp. caught.
dlat_s	numeric(7,5)	Latitude of vessel at start of the station in decimal degree.
dlon_s	numeric(8,5)	Longitude of vessel at start of the station in decimal degree.
dlat_e	numeric(7,5)	Latitude of vessel at end of the station in decimal degree.
dlon_e	numeric(8,5)	Longitude of vessel at end of the station in decimal degree.
startp	geometry	Position of vessel at start of the station as gis point type.
endp	geometry	Position of vessel at end of the station as gis point type.
track	geometry	Track line of vessel from start position to end position of station as gis line type.

Indexes:

```
"pk_t_station" PRIMARY KEY, btree (trip code, station no)
   "nx t station endp" gist (endp)
   "nx t station startp" gist (startp)
   "nx t station track" gist (track)
Check constraints:
   "enforce dims endp" CHECK (ndims(endp) = 2)
   "enforce dims startp" CHECK (ndims(startp) = 2)
   "enforce dims track" CHECK (ndims(track) = 2)
   "enforce geotype endp" CHECK (geometrytype(endp) = 'POINT'::text
                                           OR endp IS NULL)
   "enforce geotype startp" CHECK (geometrytype(startp) =
                                           'POINT'::text OR startp
                                           IS NULL)
   "enforce geotype track" CHECK (geometrytype(track) =
                                            'LINESTRING'::text OR
                                           track IS NULL)
   "enforce srid endp" CHECK (srid(endp) = 4326)
   "enforce_srid_startp" CHECK (srid(startp) = 4326)
   "enforce srid track" CHECK (srid(track) = 4326)
   "t station bot cont check" CHECK (bot cont >= 0 AND bot cont <=
                                           5)
   "t station bot type check" CHECK (bot type >= 0 AND bot type <=
                                           9)
   "t station cloud cov check" CHECK (cloud cov >= 0 AND cloud cov
                                           <= 8)
   "t station course check" CHECK (course >= 0 AND course <= 359)
   "t station eorw f check" CHECK (eorw f::text ~ '[EW]'::text)
   "t station eorw s check" CHECK (eorw s::text ~ '[EW]'::text)
   "t station gear perf check" CHECK (gear perf >= 1 AND gear perf
                                           <= 4)
   "t station lat f check" CHECK (lat f::text ~ '[2-6][0-9][0-5][0-
                                           9][0-9][0-9]'::text)
   "t_station_lat_s_check" CHECK (lat s::text ~ '[2-6][0-9][0-5][0-
                                           9][0-9][0-9]'::text)
   "t station long f check" CHECK (long f::text ~ '1[5-8][0-9][0-
                                           5][0-9][0-9][0-9]'::text)
   "t station long s check" CHECK (long s::text ~ '1[5-8][0-9][0-
                                           5] [0-9] [0-9] [0-9] '::text)
   "t station moon check" CHECK (moon >= 1 AND moon <= 4)
   "t station nors f check" CHECK (nors f::text ~ '[NS]'::text)
   "t station nors s check" CHECK (nors s::text ~ '[NS]'::text)
   "t station path check" CHECK (path >= 1 AND path <= 8)
   "t station sea col check" CHECK (sea col >= 1 AND sea col <= 8)
   "t station sea cond check" CHECK (sea cond >= 0 AND sea cond <=
   "t station swell dir check" CHECK (swell dir >= 0 AND swell dir
                                           <= 359 OR swell dir =
                                           999)
   "t station swell ht check" CHECK (swell ht >= 1 AND swell ht <=
                                           3)
   "t station time f check" CHECK (time f \geq 0 AND time f \leq 2359)
   "t station time s check" CHECK (time s \geq 0 AND time s \leq 2359)
   "t_station_wind_dir_check"    CHECK (wind_dir >= 0 AND wind_dir <=
                                           359 \text{ OR wind dir} = 999)
```

```
"t station wind force check" CHECK (wind force >= 0 AND
                                           wind force <= 12)
Foreign-key constraints:
   "fk t station area codes" FOREIGN KEY (area)
   REFERENCES rdb.area codes(code)
   "fk t station meth codes" FOREIGN KEY (gear meth)
   REFERENCES rdb.meth codes(code)
   "fk t station t door dist codes" FOREIGN KEY (distdoor code)
   REFERENCES rdb.t_door_dist_codes(door_code)
   "fk t station t fish obs codes" FOREIGN KEY (fish locn)
   REFERENCES rdb.t fish obs codes(fish obs code)
   "fk t station t fix meth codes" FOREIGN KEY (fix f)
   REFERENCES rdb.t fix meth codes(fix meth code)
   "fk t station t fix meth codes 2" FOREIGN KEY (fix s)
   REFERENCES rdb.t fix meth codes(fix meth code)
   "fk t station t headline codes" FOREIGN KEY (head code)
   REFERENCES rdb.t headline codes (headline code)
   "fk t station t trip" FOREIGN KEY (trip code)
   REFERENCES rocklob.t trip(trip code)
   "fk t station t wing dist codes" FOREIGN KEY (distwing code)
   REFERENCES rdb.t wing dist codes (wing dist code)
```

5.7 Table 7: t_stat_comm

Comment: Comments for a station in a trip.

Column	Туре	Null?	Description
trip_code	character varying(7)	No	Trip code as in the trip table.
station_no	integer	No	Station number as in station table.
comments	text	No	Comments for this station - should include comments about catch or any special action taken during tow.

Indexes:

"pk_t_stat_comm" PRIMARY KEY, btree (trip_code, station_no)

Foreign-key constraints:

"fk_t_stat_comm_t_station" FOREIGN KEY (trip_code, station_no) REFERENCES rocklob.t_station(trip_code, station_no)

5.8 Table 8: t_phy_stage

Comment: Phyllosoma life history stage table.

Column	Type	Null?	Description
trip_code	character varying(7) No	Trip code as in the trip table.
station_no	integer	No	Station number as in station table.
species	character(3)		3-char species code, refer rdb.curr_spp.
stage	character varying(3)	Code for phyllosoma larvae development stage. Refer v_phy_stage_codes.
no_a	integer		Number of animals at this stage.

Foreign-key constraints:
 "fk_t_phy_stage_t_station" FOREIGN KEY (trip_code, station_no)
 REFERENCES rocklob.t_station(trip_code, station_no)

5.9 Table 9: t_evpsumm

Comment: Table storing start and finish times and positions of stations in envelopes of DAS data.

Column	Туре	Null?	Description
trip_code	character varying(7)	No	Standard 7 char code for the trip.
evp_no	integer	No	Number to identify an envelope of DAS data.
station_no	integer		Number for station assigned to envelope. Unassigned envelopes are given a station number of 0.
lat_s	double precision	No	Latitude for start of envelope/station.
long_s	double precision	No	Longitude for start of envelope/station.
time_s	timestamp without time zone	No	Time at start of envelope/station.
time_f	timestamp without time zone	No	Time at finish of envelope/station.

Indexes:

Foreign-key constraints:

[&]quot;pk_t_evpsumm" PRIMARY KEY, btree (trip_code, evp_no)

[&]quot;fk_t_evpsumm_t_trip" FOREIGN KEY (trip_code)
REFERENCES rocklob.t_trip(trip_code)

5.10 Table 10: t_dasdata

Comment: Table storing filtered records from das envelopes.

Column	Type	Null?	Description
trip_code	character varying(7)	No	Standard 7 char code for the trip.
evp_no	integer	No	Number to identify an envelope of DAS data.
station_no	integer	No	Number for station assigned to envelope.
tally_id	character varying(12)	No	Label assigned by REACT to identify records.
timestamp	timestamp without time zone	No	Rounded timestamp when observation was made.
obs	double precision	No	Value of observation for tally_id at timestamp.

5.11 Table 11: t_deploy_meth_codes

Comment: Contains codes and their descriptions of the methods used to deploy puerulus and juvenile collectors.

Column Type Null? Description

deploy_meth character varying(10) No Code of the method of

collector deployment.

descrptn character varying(100) Description of the

collector deployment

method code.

Indexes:

"pk_t_deploy_meth_codes" PRIMARY KEY, btree (deploy_meth)

5.12 Table 12: t_stage_codes

Comment: Descriptions of crayfish development stages from phyllosoma larvae to juveniles.

Column	Туре	Null?	Description
species	character varying(3) No	3-char species code, refer rdb.curr_spp.
type	character varying(1	O) No	Flag to denote whether the stage is for a phyllosoma or a puerulus.
stage	character varying(5) No	Code for phyllosoma larvae or puerulus development stage.
descrptn	text		Description of phyllosoma larvae or puerulus development code.
key	character varying(1	0)	Group number in which a stage belongs. Used by some researchers to group similar stages together into one 'super-stage'.
lesser_stage	character varying(1	0)	Stage, as defined by Lesser, J.H.R. 1978. Phyllosoma larvae of Jasus edwardsii and their distribution off the east coast of North Island. N.Z. Journal of Marine and Freshwater Research 12 (4): 357-70.

Indexes:

"pk_t_stage_codes" PRIMARY KEY, btree (species, stage) Check constraints:

"t_stage_codes_type_check" CHECK
("type"::text ~ 'PUERULUS|PHYLLOSOMA'::text)

5.13 View 1: v_scyllarus

Comment: View of all scyllarus (SHL) phyllosoma life history stage data.

Column Type

trip_code character varying(7)

station no integer

species character(3)

stage character varying(3)

no a integer

View definition:

SELECT t_phy_stage.trip_code, t_phy_stage.station_no,
t_phy_stage.species, t_phy_stage.stage, t_phy_stage.no_a
FROM rocklob.t_phy_stage

WHERE t_phy_stage.species::text = 'SHL'::text;

5.14 View 2: v_jasus

Comment: View of all jasus (PHY) phyllosoma life history stage data.

Column Type

trip code character varying(7)

station no integer

species character(3)

stage character varying(3)

no_a integer

View definition:

SELECT t_phy_stage.trip_code, t_phy_stage.station_no,
t_phy_stage.species, t_phy_stage.stage, t_phy_stage.no_a
FROM rocklob.t_phy_stage

WHERE t_phy_stage.species::text = 'PHY'::text;

5.15 View 3: v_puer_stage_codes

FROM rocklob.t stage codes

Comment: View of descriptions of development stages of rock lobsters from puerulus to juveniles.

Column Type species character varying(3) character varying(10) type character varying(5) stage descrptn text key character varying(10) lesser stage character varying(10) View definition: SELECT t_stage_codes.species, t_stage_codes."type", t_stage_codes.stage, t_stage_codes.descrptn, t_stage_codes."key", t stage codes.lesser stage

WHERE t stage codes."type"::text = 'PUERULUS'::text;

5.16 View 16: v_phy_stage_codes

Comment: View of descriptions of development stages of phyllosoma larvae.

Column Type species character varying(3) character varying(10) type character varying(5) stage descrptn text key character varying(10) lesser stage character varying(10) View definition: SELECT t_stage_codes.species, t_stage_codes."type", t_stage_codes.stage, t_stage_codes.descrptn, t_stage_codes."key", t stage codes.lesser stage FROM rocklob.t stage codes

WHERE t stage codes."type"::text = 'PHYLLOSOMA'::text;

6 rocklob business rules

6.1 Introduction to business rules

The following are a list of business rules pertaining to the rocklob database. A business rule is a written statement specifying what the information system (i.e., any system that is designed to handle rock lobster life cycle data) must do or how it must be structured.

There are three recognized types of business rules:

Fact Certainty or an existence in the information system
Calculation employed in the information system
Validation Constraint on a value in the information system

Fact rules are shown on the ERD by the cardinality (e.g., one-to-many) of table relationships. Referential constraints, range checks, and algorithms both in the database and during data validation implement the formula and validation type rules.

Validation rules may be part of the preloading checks on the data as opposed to constraints or checks imposed by the database. These rules sometimes state that a value should be within a certain range. All such rules containing the word 'should' are conducted by preloading software. The use of the word 'should' in relation to these validation checks means that a warning message is generated when a value falls outside this range and the data are then checked further in relation to this value.

6.2 Summary of rules

Puerulus collector locations (t_locations)

location Location code, must be unique.

deploy meth Puerulus collector deployment method code must be a valid code as

listed in the table *t_deploy_meth_codes*.

Puerulus catch from a collector (t_catch)

location Must be equal to a location code held in the *t* locations table.

date checked The date a collector is checked must be a legitimate date.

collector no Must be a unique number within all collectors checked at a location

on a date.

no_catch Must be a integer greater than or equal to zero.

effort Must be a integer greater than or equal to zero.

month collected Month collected must be an integer ranging from 1 to 12.

Puerulus length frequencies (t_puer_lfreq)

Multiple columns check on location, date_checked and collector no:

The combination of *trip_code*, *date_checked* and *collector_no* must exist in the *t_catch* table.

m date Date of measurement of pueruli and/or post-pueruli. Must be a

legitimate date on or after date checked.

len p Carapace length (mm), should fall within the reasonable range of 5-

105.

no_p Must be an integer greater than or equal to zero.

Multiple columns check on no_p and len_p:

The associated value of *len_p* should not exceed 14.5.

no_pp Must be an integer greater than or equal to zero.

Multiple columns check on no_pp and len_p:

The value of len p should not be less than 14.5.

no_m_pp Must be an integer greater than or equal to zero.

no f pp Must be an integer greater than or equal to zero.

Multiple columns check on no pp, no m pp, and no f pp:

The sum of no m pp and no f pp cannot exceed no pp.

Puerulus length frequencies (t_puer_stage)

Multiple columns check on location, date_checked and collector no:

The combination of $trip_code$, $date_checked$ and $collector_no$ must exist in the t_catch table.

stage Puerulus life cycle stage number, must be a valid code as listed in

the view v puer stage codes.

no a Number of pueruli at the stage number, should fall within the

reasonable range of 1-50.

Phyllosoma survey trip details (t_trip)

trip_codeTrip code, must be unique. Trip codes are in the following format:

3 character vessel code (see the *vessels* table in the **rdb** database for available codes); 2-digit year (e.g., 99 = 1999, 00 = 2000); 2-digit

sequential trip number for each vessel each year.

proj code Project code must be a valid code within the NIWA project

management system.

date_s The start date of the trip must be a legitimate date.

date f The start date of the trip must be a legitimate date.

Multiple column checks on start and finish dates:

The start date must not be later than the finish date.

areas Each of the listed area codes must be a valid code as listed in the

area codes table in the rdb database.

mainspp Each of the listed species codes must be a valid code as listed in the

curr spp table in the rdb database.

Phyllosoma survey station details (t_station)

trip_code Must be equal to a trip code as listed in the t_t trip table.

station no Must be a unique number within a single trip.

area Area code must be a valid code as listed in the *area codes* table in

the **rdb** database.

course Course must be within the range of 0 - 359 degrees.

date s The date at the start of a station must be a legitimate date.

Multiple column checks on start date:

The date must fall within the range of the range of the trip start and

finish dates.

time s Start time of the station must be a valid 24-hour time and fall within

the range of 0 - 2359 hours.

fix s } The method of position fix code must be valid code as

fix_f } listed in Appendix 1.

lat s Must be a valid latitude

NorS s Northern or Southern Hemisphere at station start, must be equal to

either "N" or "S".

long s Must be a valid longitude.

EorW s Longitude east or west at station start, must be equal to either "E" or

"W".

bot gs Depth of sea bottom must not be less than depth of gear

date f The date at the finish of a station must be a legitimate date.

Multiple column checks on finish date:

The date must fall within the range of the range of the trip start and

finish dates.

time_f Finish time of the station must be a valid 24-hour time and fall

within the range of 0 - 2359.

Multiple columns checks on date and time:

The start date must not be later than the finish date and within a

reasonable time period.

lat f Must be a valid latitude

NorS f Northern or Southern Hemisphere at station finish, must be equal to

either "N" or "S".

long f Must be a valid longitude.

EorW f Longitude east or west at station finish, must be equal to either "E"

or "W".

Multiple columns checks on position:

The finish position should be within a reasonable distance from the

start position.

bot gf Depth of sea bottom must not be less than depth of gear

min gdepth Minimum gear depth must be less than or equal to the depth of gear

at the start and finish of the station.

max gdepth Maximum gear depth must be greater than or equal to the minimum

gear depth and the depth of gear at the start and finish of the station

gear meth Gear method code must be a valid code as listed in the *meth codes*

table in the rdb database.

gear code Must within the range 1-3 to relate to gear1, gear2, and gear3

respectively in the *t* trip table.

gear perf The gear performance code must be valid code as listed in Appendix

1.

path The path code must be valid code as listed in Appendix 1.

speed The vessel's recorded speed during the station should be within the

range 0-5 knots and be reasonable for the gear method.

distance The distance traveled during the station should be reasonable for the

type of gear method.

Multiple columns check on: distance; start and finish positions; and speed and start/finish times:

The distance traveled during a station as calculated by (1) the difference between start and finish positions; (2) speed * elapsed time; and (3) recorded distance should be in approximate agreement.

head code Headline height code must be a valid code as listed in the

t_headline_codes table in the **rdb** database.

distwing code Distance between trawl wings code must be a valid code as listed in

the *t_wing_dist_codes* table in the **rdb** database.

distdoor code Distance between trawl doors code must be a valid code as listed in

the t door dist codes table in the **rdb** database.

wind dir Wind direction must fall within the range of 0-359, 999.

wind force Wind force must fall within the range of 0 - 12.

air_temp Air temperature should fall within the reasonable range of 5-30.

air press Air pressure should fall within the reasonable range of 960 to 1040.

cloud cov Cloud cover must fall within the range of 0-8.

sea cond The sea condition code must be valid code as listed in Appendix 1.

sea col The sea colour code must be valid code as listed in Appendix 1.

swell ht The swell height code must be valid code as listed in Appendix 1.

swell dir Wind direction must fall within the range of 0-359, or equal 999.

bot type The bottom type code must be valid code as listed in Appendix 1.

bot cont The bottom contour code must be valid code as listed in Appendix

1.

surf temp Sea surface temperature should fall within the reasonable range of 5

-28.

bot temp Sea bottom temperature should fall within the reasonable range of 3

-25.

wind spd Wind speed should fall within the reasonable range of 0 - 30.

secchi Secchi disc distance should fall within the reasonable range of 0 –

40.

moon Moon phase must fall within the range of 1 - 4.

Phyllosoma survey station comments (t_stat_comm)

trip_code Must be equal to a trip code as listed in the t_t table.

station_no Must be a unique number within a single trip.

Multiple columns check trip code and station number:

The combination of trip code and station number must exist in the

t station table.

Phyllosoma survey stage data (t_phy_stage)

trip code Must be equal to a trip code as listed in the *t trip* table.

station_no Must be a unique number within a single trip.

Multiple columns check trip code and station number:

The combination of trip code and station number must exist in the

t station table.

species The species code must be valid code as listed in Appendix 1.

stage The phyllosoma life history stage code must be valid code as listed

in Appendix 1.

Phyllosoma survey DAS envelope summary (t_evp_summ)

trip_code Must be equal to a trip code as listed in the *t trip* table.

station_no Must be a unique number within a single trip.

Multiple columns check trip code and station number:

The combination of trip code and station number must exist in the

t station table.

evp_no Must be a unique number within a single trip.

lat s Must be a valid latitude.

long s Must be a valid longitude

time s Must be a valid date and time.

time f Must be a valid date and time.

Phyllosoma survey DAS data (t_dasdata)

trip_code Must be equal to a trip code as listed in the *t trip* table.

station no Must be a unique number within a single trip.

Multiple columns check trip code and station number:

The combination of trip code and station number must exist in the

t station table.

evp_no Must be a unique number within a single trip.

tally id The DAS data tally id code must be valid code as listed in

Appendix 1.

timestamp Must be a valid date and time.

Puerulus and juvenile collector deployment codes (t_deploy_meth_codes)

deploy meth Must contain a value.

descrptn Must contain a value.

Puerulus development stage codes (t_stage_codes)

species Species code must be a valid species code as listed in Appendix 1.

type Must be equal to either "PHYLLOSOMA" or "PUERULUS".

stage Puerulus development stage code must contain a value.

Multiple columns check on species, type, and stage:

The values in the species, type, and stage attributes must be a unique

combination.

7 References

- Booth, J. D., Carruthers, A. D., Bolt, C. D., and Stewart, R. A. 1991: Measuring depth of settlement in the red rock lobster, *Jasus edwardsii*. *New Zealand journal of marine and freshwater research*.
- Booth, J. D. & Forman, J. S. 1995: Larval recruitment in the red rock lobster, *Jasus edwardsii*. N.Z. Fisheries Assessment Research Document 95/7. 46p.
- Booth, J. D., Forman, J. S., and Stotter, D. R. 1998: Abundance of early life history stages of the red rock lobster, *Jasus edwardsii*, with management implications. *N.Z. Fisheries Assessment Research Document 98/10*. 71p.
- 4. Mackay, K. A. 1998: Database documentation: trawl. *NIWA Internal Report No.* 16. 35p.

Appendix 1 – Reference Code Tables

Position fix method code

01 Radar 02 Dead reckoning 03 Astrofix 04 Transect marks 05 Radio (RDF) 06 Radar and RDF 07 Satnav Global positioning satellite (GPS) 80 09 Local knowledge

GPX

Gear performance code

10

2. Excellent

3. Satisfactory, catch unlikely to be reduced by

performance

4. Unsatisfactory, catch probably reduced by

malfunction or damage

5. Unsatisfactory, catch reduced by malfunction or

damage

Path code

1. Horizontal straight line

2. Vertical straight line

3. Closed circle or loop

4. Closed triangle or square

5. Zigzag

6. U-bend

7. Contour at constant depth

8. Retrack on straight line

Sea condition code

0	Calm, glassy	0m
1	Calm	0 - 0.1 m
2	Smooth	0.1 - 0.5 m
3	Slight	0.5 - 1m
4	Moderate	1 - 2.5 m
5	Rough	2.5 - 4m
6	Very rough	4-6m
7	High	6 - 10m
8	Very high	10 - 15m
9	Huge	over 15m

Sea colour code

01	Deep blue
02	Blue
03	Light blue
04	Greeny blue
05	Bluey green
06	Deep green
07	Green
08	Yellow green

Swell height code

1	Low	0 - 2m
2	Moderate	2-4m
3	Heavy	over 4m

Unknown

Bottom contour code

0	Unknown
1	Smooth/flat
2	Undulating
3	Hillocky
4	Rugged
5	Very rugged

Bottom type code

0

1	Mud or ooze
2	Mud with some sand
3	Sand
4	Sand/gravel and shells
5	Shells (broken)
6	Gravel
7	Rock
8	Coral
9	Stone
10	Live shell beds
11	Mud with broken shells
12	Sponge beds

Species code

PHC	Packhorse rock lobster	Jasus verreauxi
PHY	Phyllosoma	
PRK	Prawn killer	Ibacus alticrenatus
PUE	Puerulus	
CRA	Rock lobster	Jasus edwardsii
SHL	Shovelnosed lobster	Scyllarus sp
SLO	Spanish lobster	Arctides sp

DAS data tally id code

GPLat Latitude
GPLong Longitude
GPHDT GPS Heading
GPVkts GPS Velocity
KMCdbt Kaijo Denki Depth
ReqLen Required warp length
SSSal Surface salinity

SSMTW Surface salinity
Surface water temperature

BarPressur
AirTemp
WindDirn
Nvelocity

Barometric Pressure
Air Temperature
Wind Direction
Wind Speed

SNSDep Scanmar gear depth SNSDi1 Scanmar distance 1 SNSDi2 Scanmar distance 2

SNSDiR1 Scanmar distance 1 change SNSDiR2 Scanmar distance 2 change CN22 Depth from Furuno CN22 MagLat Latitude from Magnavox GPS MagLong Longitude from Magnavox GPS

EK5dbt1 EK500 depth 1
EK5dbt2 EK500 depth 2
PlHDT Plath heading
NKvhw Naviknot speed

LenStbdLength of starboard warpLenPortLength of port warpTenStbdLength of starboard warpTenPortTension in port winch

CI30Depth Depth of top layer on doppler
CI30Spd Speed of doppler log current
CI30Dir Direction of doppler current
CI30L1Dep Depth of first layer on doppler

CI30L1Cur Speed of first layer doppler log current
CI30L1Dir Direction of first layer doppler current
CI30L2Dep Depth of second layer on doppler

CI30L2Cur Speed of second layer doppler log current CI30L2Dir Direction of second layer doppler current

CI30L3Dep Depth of third layer on doppler

CI30L3Cur Speed of third layer doppler log current CI30L3Dir Direction of third layer doppler current